
Abstract--Finite-control-set model predictive control 

(FCS-MPC) shows great control performance and 

adaptability for different converter topologies and operating 

modes. However. The computation burden increases 

significantly for long prediction step and multi-level topology. 

Artificial neuron network (ANN) is developed to imitate 

FCS-MPC controller for similar control effect with lower 

computation burden. However, the imitation accuracy is not 

good enough for single ANN. To achieve acceptable control 

effect using a simple ANN, we propose an FCS-MPC-based 

dual-module ANN controller. We first off-line train the ANN 

to imitating the FCS-MPC. Then we designed a dual-module 

structure which combines ANN and FCS-MPC to increase 

the imitation accuracy. The simulation result shows that the 

accuracy of our design increases to 99.87% while the 

computation burden is reduced by 58.8% compared with 

FCS-MPC. It can achieve similarly control performance and 

significantly reduce computation burden. 

Index Terms—ANN, Computation burden, FCS-MPC, 

THD. 

I. INTRODUCTION

Finite control set model predictive control (FCS-MPC) 

is an effective method for controlling power converters, 

offering a flexible and intuitive approach that can manage 

multivariable problems and incorporate system constraints 

[1]. It is treated as an alternative promising candidate for 

controlling modular multi-level converters (MMC) which 

shows great advantages of high power level, low 

harmonics, and easy expansion. [2][24]. 

However. with the increase of the number of output 

levels and prediction period, FCS-MPC’s computational 

burden increases rapidly, put a cell on the MMC’s 

performance. In this regard, people have carried out many 

research to reduce them computation burden [8] [9] [10]. 

Reference [11] filters the switch state for next time step by 

considering some neighboring switching combinations of 

current state. Reference [12] groups submodules in MMC 

and use adjacent voltage level evaluation to reduce the 

computation burden. These methods are all based on 

traditional MPC, and use different methods to pre-select 

candidate states to reduce the computational burden. 

However, when the topology of MMC is more complex 

and the number of candidate states cannot be effectively 

reduced, the computational burden of such methods is very 

heavy. Therefore, machine learning (ML) based methods 

that do not rely on traversing candidate states are proposed 

[13]. 

ML have been widely used in power electronics due to 

their excellent nonlinearity and data processing 

capabilities [14] [23]. Artificial neuron network (ANN), 

which is also known as multi-layer perceptron (MLP), has 

been developed for many years since its invention in 1958 

due to their simple structure and easy deployment. Some 

researchers have developed ANN to imitate FCS-MPC 

[15][16]. ANN has been adapted in voltage tracking for 

three-phase converter [17] and weighting factor design for 

FCS-MPC [21]. In [18], a similar performance is achieved 

by ANN compared with model predictive control in a two-

level topology with a reduced computation burden. The 

performance of the ANN is affected by the network 

structure [14]. 

In this paper, we first introduce a new evaluation 

method for the ANN. Then we propose a dual-module 

controller structure based on ANN and FCS-MPC, which 

use ANN to shrink the state space for FCS-MPC. 

According to the simulation, our design achieves qualified 

control effect and low computation burden at the same 

time. The computation burden is reduced up to 58.8% 

compared to conventional FCS-MPC and the imitation 

accuracy is increased to 99.87%. Our design also provides 

sufficient flexibility for the controller. By introducing 

artificially controlled parameters, the Pareto boundary of 

the controller's performance is given, and it can cope with 

the scenario where the control frequency and control effect 

are traded off. Although these methods exhibit excellent 

efficiency in terms of computational burden, their 

imitation accuracy, or control effect, can’t fully match that 

of FCS-MPC. [23] 

The arrangement of this paper is as follows: In the 

second section, we introduce the components of the whole 

system, including the topology of the three-level converter, 

the design of the MPC, the design of the ANN, and the 

definition of the TOP-n accuracy. In the section III, we 

propose a dual-module controller structure, and design the 

working mode and working standard for it. Then we test 

our design in MATLAB SIMULINK and present the 

simulation results in Section IV, and then we analyze and 

discuss the simulation results. Finally, we give the 

conclusion of this paper and the follow-up work plan in 

Section V. 
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II. MODEL EXPLANATION

In this section, we illustrate the details of our model 

including circuit topology, FCS-MPC design, ANN model 

and TOP-n accuracy. 

A. Converter topology

The three-level neutral-point clamped (NPC) converter

is used as the topology of this paper which is shown in Fig. 

1, and the specific parameters are given in TABEL I. Three 

phase AC grid is connected to the converter with via a filter. 

Fig. 1 Topology of 3-level NPC 

TABEL I 

System parameters of 3-level NPC 

Parameter Value 

𝑉𝑑𝑐 800 V 

𝐶1 3.1 mF 

𝐶2 3.1 mF 

𝑅𝑔 0.1 Ω 

𝐿𝑔 6 mH 

𝑇𝑠 10 μs 

𝑓𝑟𝑒𝑠 50 Hz 

𝐸𝑝ℎ𝑎𝑠𝑒 220 V 

B. FCS-MPC model

The conventional FCS-MPC control is built on the cost

function. In this paper, control objectives include output 

current tracking and DC-link voltage balancing. The cost 

function is as follows in the 𝛼 − 𝛽 axis [22][22]: 

𝑔 = 𝜔1(𝑖𝛼
∗ − 𝑖𝛼

𝑃)2 + 𝜔2(𝑖𝛽
∗ − 𝑖𝛽

𝑃)
2
+ 𝜆𝐷𝐶|𝑉𝐶1

𝑃 − 𝑉𝐶2
𝑃 | (1)

𝑔 stands for the cost for FCS-MPC. 𝑖 is the current 

and 𝑉  is the voltage. Variables with the superscript 𝑃 

represent the corresponding predicted value for the next 

time step while that with superscript ∗  represent the 

reference value. 𝜔1 , 𝜔2  and 𝜆𝐷𝐶  are the weight

coefficient to adjust the proportion of each component in 

the cost function. In this paper, 𝜔1 and 𝜔2 are 1 while

𝜆𝐷𝐶 is 0.1. The prediction value is calculated as follows

for the topology in this paper: 

𝑖𝑃(𝑘 + 1) = (1 − 𝑅𝑔
𝑇𝑠
𝐿𝑔
) 𝑖(𝑘) +

𝑇𝑠
𝐿𝑔

(𝑣(𝑘) − 𝑒(𝑘)) (2) 

𝑣𝑜
𝑃(𝑘 + 1) = 𝑣𝑜(𝑘) −

𝑇𝑠
𝐶
(𝑖𝑎𝑏𝑐)

𝑇|𝑣𝑎𝑏𝑐| (3) 

Fig. 2 ANN imitating FCS-MPC 

In each control cycle, controller will traverse the state 

space and select the state with the smallest cost as the 

control output for next time step. For the three-level 

topology in this paper, the number of possible states is 27, 

which means the size of state space is 27. 

C. ANN model

ANN consist of fully connected layers. It can handle

different problems including classification. Take the 

control problem as a classification problem, ANN can 

achieve similar control effect of FCS-MPC [20][22]. The 

structure of ANN is shown in Fig. 2. In order to show the 

superiority of our design, ANN’s structure is extremely 

simple, which has one input layer with 7 neurons, one 

hidden layer with 5 neurons and one output layer with 27 

neurons. 

The input layer normalizes all inputs based on these 

data to avoid impressions of controller effects for 

magnitudes of different input variables. 

The size of hidden layer has a strong effect on the 

network’s performance. Within a suitable range, the 

classification ability of a neural network is positively 

correlated with its size. After get the sum of product from 

input layer, each neuron will perform activation and 

generate the layer output. The activation function is the 

key point for no-linear ability. 

The output layer will apply softmax function to give the 

probability for each switch state. 

D. TOP-n accuracy

More than the portion of correct classification, the

indicators for evaluating model performance include TOP-

n accuracy. It is defined as follows: TOP-n accuracy refers 

to whether n categories with the highest probability 

include the correct results [19] for classification 

problem[19]. This TOP-n accuracy somehow relax the 

evaluation of the neural network, as a component of 

introduction of subsequent processing, which brings 

different possibilities to the training goal of a neural 

network. 

When 𝑛 is 1, the TOP-n accuracy is degraded to the 

classification accuracy. When 𝑛  is as large as the 

categories number, the TOP-n accuracy is 100%. 
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(a)                                         (b) 

Fig. 3 Dual-module controller structure 

 

III.  DUAL-MODULE FCS-MPC 

In this section, a detailed explanation of our dual-

module structure is presented. Two modules are 

conventional FCS-MPC and ANN. 

A.  Main idea 

The main steps of our design are as follows: 

⚫ Training: 

1. Use FCS-MPC to generate the training data 

and train ANN to imitating FCS-MPC. 

2. Find 𝑛 which makes ANN’s accuracy close 

to 100% according to TOP-n accuracy 

⚫ Operating: 

1. Use ANN as the main controller, record TOP-

n states and final state. 

2. (optional) Make a judgment on whether 

additional computation is needed. 

3. (optional) If so, reselect the final state based 

on FCS-MPC among 𝑛 states. 

4. Else, output the final state. 

If no judgment is used, FCS-MPC will traverse TOP-n 

states and find the optimal one among them as the output. 

ANN is used to shrink the state space for FCS-MPC. 

B.  Training of ANN 

The training data is generated by FCS-MPC. We load 

the input vector of FCS-MPC including phase current, 

phase voltage and DC link voltage. The selected switch 

state is recorded as the classification label. To improve the 

robustness of our model, we consider the step transient 

load in training data generation. 

Based on initial weight and bias matrix (ℎ), a forward 

propagation is applied to generate a switch state. We 

calculate the error (𝑒) between generated state and ground 

truth. The derivative of error is calculated with chain rule 

and gradient descent. For a quick convergence of the 

network, we applied adaptive learning rate in the training. 

 
𝜕𝑒

𝜕ℎ
=
𝜕𝑒

𝜕𝑥
×
𝜕𝑥

𝜕ℎ
(4) 

ℎ = ℎ − 𝜆
𝜕𝑒

𝜕ℎ
(5) 

 

𝑥 is the intermediate variable in hidden layers. 

C.  Probability difference judgment 

TOP-n states are sorted in descending order of 

 
Fig. 4 Variation of training process parameters 

 

probability. Manually set a threshold 𝑇 . Calculate the 

probability gap 𝑃𝑑𝑖𝑓𝑓  of state with highest and lowest 

probability. If it is 𝑇 > 𝑃𝑑𝑖𝑓𝑓 , no additional computation 

is needed and ANN’s final state is directly output. Or FCS-

MPC is utilized to reselect the state among TOP-n states. 

D.  ANN-MPC structure explanation (FCS-MPC based) 

The ANN is used as the filter for FCS-MPC to reduce 

the state space size. As is shown in Fig. 3 (a), the control 

parameters are fed into both ANN and FCS-MPC. After 

the ANN generate the candidate states, FCS-MPC will 

traverse the reduced state space to generate the final output. 

It introduces extra computation burden from FCS-MPC 

compared to single ANN, although the computation 

burden is still significantly reduced compared to 

conventional FCS-MPC. 

E.  ANN-MPC structure explanation (ANN based) 

After the ANN gives the candidate states, probability 

difference judgment is applied. If the judgment is met, 

ANN’s final state is directly used, otherwise FCS-MPC is 

called for reselect the output state as is shown in Fig. 3 (b). 

IV.  SIMULATION AND ANALYSIS 

A.  Training procedure 

We split the control data of FCS-MPC, 70% as training 

set, 15% as validation set, and 15% as test set. The training 

is based on MATLAB Deep-learning Toolbox.  

As is shown in Fig. 4, the number of validation accuracy 

increase as the gradient decreases. Training loss curve is 

shown in Fig. 5. The ANN performance doesn’t further 

improve with more train turns which means at this point 

the performance cell of the neural network is achieved. 
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TABEL II Imitation accuracy for different operation modes 

Operation mode 

Judging principle 

FCS-MPC ANN Our design (FCS-MPC based) Our design (ANN based) 

Probability difference / / / 𝑇 = 0.4 𝑇 = 0.6 𝑇 = 0.8 

Imitation accuracy 100% 82.65% 99.87% 89.36% 97.6% 99.84 % 

Call of FCS-MPC / / / 11.67% 37.98% 64.69% 

Computation burden 1215 275 500 (275+45*5) 500 (maximum) 

Fig. 5 Training loss curve 

The imitation accuracy of a single ANN converges to 

82.65% after training 396 turns. 

We conduct more experiments to explore the imitation 

accuracy as is shown in TABEL III. 

TABEL III Accuracy VS layer size 

Hidden layer size Accuracy 

5 82.6% 

10 88% 

15 88.8% 

Here we notice that the accuracy is positive related to 

the size of size of network. Marginal growth decreases as 

size increases. The simulation accuracy converges 

predictably as the network size increases. This also 

indicates that additional methods are necessary to improve 

the performance of neural networks. 

B. Parameter selection

We record the output of ANN based on TOP-1, TOP-3,

and TOP-5 and check if the output of teacher network is 

included. We found that the shallow ANN almost perfectly 

reproduced the working mode of MPC when evaluating 

the model with TOP-5 accuracy as is shown in the TABEL 

IV. Therefore, we use the TOP-5 accuracy as the judgment

criteria and use TOP-5 states as the candidate states for the

rest of this paper.

TABEL IV TOP-n accuracy comparison 

Parameter Accuracy 

TOP-1 82.65% 

TOP-3 98.66% 

TOP-5 99.87% 

C. Imitation accuracy of dual-module controller

The accuracy of FCS-MPC is set to 100% as reference.

Fig. 6 Computation burden for different modes 

For single ANN, the imitation accuracy is 82.65%. For 

MPC-based sequential operation, imitation accuracy is 

99.87%. Other imitation accuracies are listed in TABEL II. 

Obviously, the imitation accuracy of our design is much 

greater than that of single ANN. In our experiments, the 

accuracy improvement brought by a larger-scale ANN is 

very limited, and our design can easily improve the 

controller performance. The additional computational 

burden introduced will be discussed in the next section. 

D. Computation burden

We count the number of operations performed in each

cycle as a rough estimation of the computational burden. 

For the topology and cost function in this paper, 45 

computations are needed to calculate the cost function for 

one switch state, 1215 computations are required in one 

control cycle for FCS-MPC. Single ANN only needs 275 

computations to finish a control step. Histogram Fig. 6 

makes a visual comparison of computation burden. 

For FCS-MPC based mode, additional computation 

burden is introduced to increase the accuracy. The 

computation burden for this mode is 500 which is much 

lower than that of conventional FCS-MPC. For ANN 

based mode, the computation burden consists of two parts: 

ANN and FCS-MPC (optional). The maximum value is 

500 which is also lower than that of conventional FCS-

MPC. The computation burden for the whole task will 

increase with the increase of threshold 𝑇, originated from 

additional call of FCS-MPC. 

E. Call of FCS-MPC

In addition to the evaluation of the accuracy, we also

tested number of calling of FCS-MPC for error correction, 

and counted the number of calls of MPC. The result is 

shown in Fig. 7. 
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Fig. 7 Number of calls of FCS-MPC 

 
Fig. 8 Pareto front for accuracy VS number of calls 

 

If we set a larger threshold 𝑇, it will be more difficult 

for the output of ANN to meet the judgment conditions, so 

FCS-MPC will be called more times, additional 

calculation burden will be introduced, and the accuracy 

rate will increase. When 𝑇  is set to 1, our design 

degenerates into ANN and FCS-MPC operating in series, 

which is a totally useless design. If 𝑇 is small, the number 

of FCS-MPC calls will be reduced, and additional 

calculation burden will be reduced accordingly, but the 

accuracy will decrease. When 𝑇 is set to 0, our design 

degenerates to a single ANN control unit working. 

This 𝑇 brings great adaptability to our design. We use 

this parameter to bring the Pareto boundary to the control 

performance as is shown in Fig. 8. By changing 𝑇 , 

different optimal solutions can be selected at this boundary. 

If extremely high imitation accuracy is required, a larger 

𝑇  can be selected. If it is sensitive to the computation 

burden, you can choose a smaller 𝑇. 

 

F.  Control effect and THD 

To test the control performance of our design, we 

directly use dual-module controller to control the three-

level converter. According to the simulation result in Fig. 

9, our design achieves an acceptable control performance 

for the topology in this paper. The THD value is controlled 

below 4% and DC link voltage is totally balanced. 

 
Fig. 9 Control performance of dual-module controller 

V.  CONCLUSION 

In this paper, we designed a dual-module structure 

based on ANN and MPC. The working mode and control 

strategy is explained. Using the proposed structure, the 

imitation accuracy is increased up to 99% which is 

significantly higher than that of single ANN, while 

computational burden is reduced up to 58.8% compared 

with FCS-MPC. Our design shows acceptable control 

performance with very efficient computation. Experiment 

verification will be carried out in the future 
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