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Abstract 
 

Finite control set model predictive control (FCS-MPC) 
stands out for fast dynamics and easy inclusion of multiple 
nonlinear control objectives. But for long horizontal 
prediction or complex topologies with multi-levels and 
multi-phases, the required computation burden surges 
exponentially as the increases of candidate switch states 
during one control period. This leads longer sample period 
to guarantee enough time for traverse progress of cost 
function minimization. In other words, the allowed highest 
switching frequency is bounded much far from the physical 
limits, especially for wide-band semiconductors 
applications. To overcome this, the parallel computing 
characteristic of artificial neural network (ANN) motivates 
the idea of ANN-based FCS-MPC imitator (ANN-MPC). In 
this article, by the utilization of a shallow neural network, 
we implement ANN-MPC on a neutral point clamped (NPC) 
converter. The expert (FCS-MPC) is designed at first, and 
then the basic structure including activation function 
selection, training data generation and offline training 
progress, and online operation of the imitator (ANN-MPC) 
are discussed. After the design of both expert and imitator, 
a comparative analysis is conducted by FPGA-in-the-loop 
implementation in MATLAB/Simulink environment. The 
verification results of ANN-MPC show highly similarly 
qualified control performance and much reduced 
computation resources requirement. 
 
Keywords Model predictive control ∙ Power converter ∙ 
Artificial neural network ∙ Computation burden ∙ Imitation. 
 
1  Introduction 
 

The finite control set model predictive control (FCS-MPC) 
is becoming more and more promising with the 

development of microprocessors. Among a number of 
advanced control strategies, it stands out because of the 
strong ability of multiple nonlinear control objectives 
inclusion and outstanding transient state control 
performance [1-4]. By the minimization of a weighted cost 
function, FCS-MPC traverses all potential switch states and 
selects the optimal one for the next whole control period. 

However, the practical applications of FCS-MPC remain 
stagnant within relatively simple topological converters and 
short horizontal prediction. For long horizontal prediction, 
the computation burden surges as the increase of predictive 
step amounts. While facing multi-level or multi-phase 
power converters, the number of candidate switch states 
would increase exponentially, which requires much high 
computation demands for the traversal progress of cost 
function minimization. And there would be trade-off 
progress between the complexity of converters and feasible 
highest switching frequency, in another word, the generality 
and the power density, which is against the trend of wide-
band semiconductor-based power system design in this 
decade. 

Recently, the artificial neural network (ANN) has 
attracted much attention in power electronics applications 
[5, 6]. According to the universal approximation theorem 
[7], even a shallow neural network (with only one hidden 
layer) could achieve a precisely approximation for mapping 
of complex input-output. And its parallel propagation 
(parallel computation) characteristic motivates renovation 
of traditional controller implementation, automated design 
of system and circuit components, and so on. For example, 
the ANN-based surrogate model is used to replace lookup 
tables for inductor thermal and magnetic models [8-10]. 
And system parameter identification could be achieved 
without prior knowledge by the assistance of ANN [11]. 

If the FCS-MPC is regarded as an expert to generate 
training data, an ANN-based imitator of FCS-MPC (ANN-
MPC) had been discussed for resonant converters [12], 
simple two level three-phase inverters [13, 14], multicell 
converters [15], modular multilevel converters [16] and 
multi-step prediction [17]. The control performance of 
ANN-MPC in other popular topologies and their variants 
needs to be investigated. 

In this work, we closely investigate the performance of 
ANN-MPC for a three-phase three-level neutral point  
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Fig. 1 Overview of FCS-MPC for a 3-L NPC converter connected 
to resistive–inductive–active loads 

 

 
Fig. 2 Definition of 27 switching states and corresponding voltage 
vectors 

 
clamped (NPC) power converters. A suitable FCS-MPC 
controller is designed for the NPC converter and 
corresponding load environment, which supplies training 
data for ANN. Then ANN-MPC and FCS-MPC are parallel 
simulated to collect new training sets, especially for 
mismatched control outputs for continuous reciprocating 
training. The FPGA-in-the-loop (FIL) simulation results 
show that the trained neural network accurately imitates 
FCS-MPC’s input-output mapping while achieving 
qualified control performance and much reducing the 
computation burden. 

 
2  CONVENTIONAL FCS-MPC CONTROLLER 
DESIGN 
 

According to if the control input is continuous, MPC  

Table 1  System Parameters 
Parameter Value 
DC-link voltage 𝑉𝑉𝑑𝑑𝑑𝑑 = 800 V 
DC-link capacitance 𝐶𝐶1 = 𝐶𝐶2 = 3.1 𝑚𝑚𝑚𝑚 
Load passive parameter 𝑅𝑅𝑔𝑔 = 0.1 Ω, 𝐿𝐿𝑔𝑔 = 8 mH 
EMF Voltage 𝑓𝑓ref = 50Hz, 𝐸𝐸�line = 380V 
Sampling time 𝑇𝑇𝑠𝑠 = 20 𝜇𝜇s 
Weighting factor 𝜆𝜆𝑑𝑑𝑑𝑑 = 0.1 
 

could be divided into continuous control sets (CCS-MPC) 
and FCS-MPC. In this article, the latter one is chosen as an 
expert imitated by a shallow neural network. And the core 
design steps of FCS-MPC are discussed in this section from 
discrete model construction to weighting factors design. 

 
2.1  Discrete Converter Model 
 

As shown in Fig.1, the 3-L NPC converter connected to 
resistive–inductive–active loads is chosen to show ANN-
MPC’s control performance. With this model, a wide range 
of applications could be covered including induction 
machine drive, passive loads, grid-connected converters, 
and so on. The upper and lower switches are denoted, 
respectively, as 𝑆𝑆𝑥𝑥𝑥𝑥  and 𝑆𝑆̅𝑥𝑥𝑥𝑥  ( 𝑥𝑥 ∈ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}  and 𝑖𝑖 ∈
{1, 2}). By regarding the neutral point of DC-link as a zero 
voltage potential point, the single-phase output voltage (𝑣𝑣𝑥𝑥) 
could be defined as: 

 

𝑣𝑣𝑥𝑥 ≔

⎩
⎪
⎨

⎪
⎧

1
2
𝑉𝑉𝑑𝑑𝑑𝑑     if : 𝑆𝑆𝑥𝑥1 = 1 ∧ 𝑆𝑆𝑥𝑥2 = 1

0      if : 𝑆𝑆𝑥𝑥1 = 0 ∧ 𝑆𝑆𝑥𝑥2 = 1

−
1
2
𝑉𝑉𝑑𝑑𝑑𝑑      if : 𝑆𝑆𝑥𝑥1 = 0 ∧ 𝑆𝑆𝑥𝑥2 = 0

 (1) 

 

where the output voltage of total 27 candidate switch states 
and their corresponding voltage vectors are shown in Fig. 2. 
All of them are divided into two categories, the redundant 
vector (S4~15 shown in Fig.2) means vectors that show the 
same effect for current tracking but different for voltage 
balance of the DC-link.  

For FCS-MPC applications, usually, the sampling 
frequency is relatively high [1], which enables 
discretization for derivative equation models from the basic 
electric principles like Kirchhoff laws. Here the forward 
Euler approximation ( 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑥𝑥(𝑡𝑡) ≈ 𝑥𝑥[𝑘𝑘+1]−𝑥𝑥[𝑘𝑘]

𝑇𝑇𝑠𝑠
) is utilized for 

the derivative of load current. After Clarke coordinate 
transformation for system parameter decoupling, the result 
discrete system model in 𝛼𝛼𝛼𝛼 frame is as follows: 

 

𝑖𝑖 𝛼𝛼𝛼𝛼(𝑘𝑘 + 1) = �1 − 𝑅𝑅𝑔𝑔
𝑇𝑇𝑠𝑠
𝐿𝐿𝑔𝑔
� 𝑖𝑖𝛼𝛼𝛼𝛼(𝑘𝑘)                       

               +
𝑇𝑇𝑠𝑠
𝐿𝐿𝑔𝑔
�𝑣𝑣𝛼𝛼𝛼𝛼(𝑘𝑘) − 𝑒𝑒𝛼𝛼𝛼𝛼(𝑘𝑘)� (2)
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Fig. 3 Amounts of candidate switch states of conventional FCS-
MPC with long prediction horizon for the three-phase 2-L inverter  
 

𝑉𝑉𝑜𝑜(𝑘𝑘 + 1) = 𝑉𝑉𝑜𝑜(𝑘𝑘) −
𝑇𝑇𝑠𝑠
𝐶𝐶
�𝑖𝑖𝑎𝑎𝑎𝑎𝑑𝑑(𝑘𝑘)�⊤|𝑉𝑉𝑎𝑎𝑎𝑎𝑑𝑑(𝑘𝑘)|, (3) 

 

where 𝐶𝐶, 𝑅𝑅𝑔𝑔, 𝐿𝐿𝑔𝑔 and 𝑇𝑇𝑠𝑠 denote DC-link capacitance,  
load resistance, load inductance, and sampling period, 
respectively. 𝑉𝑉𝑜𝑜 , 𝑖𝑖𝛼𝛼𝛼𝛼  and 𝑒𝑒𝛼𝛼𝛼𝛼  are the DC-link capacitor 
voltage difference, load current, and electro-motive-force 
(EMF) voltage, which are listed in Table 1. 

 
2.2  FCS-MPC Design 
 

As long as the aimed control objectives could be 
quantified into a cost function, with the assistance of 
weighting factors, all of the objectives would be greedily 
pursued through the trade-off progress. For NPC power 
converters, typical control requirements are load current 
reference tracking and DC-link capacitor voltage balance, 
which are formulated as follows: 

 

𝑔𝑔 = �𝑖𝑖𝛼𝛼∗ − 𝑖𝑖𝛼𝛼
𝑝𝑝�2 + �𝑖𝑖𝛼𝛼∗ − 𝑖𝑖𝛼𝛼

𝑝𝑝�
2

+ 𝜆𝜆𝑑𝑑𝑑𝑑�𝑉𝑉𝑜𝑜
𝑝𝑝�, (4) 

 

where the superscript 𝑝𝑝  and ∗  represent predictive and 
reference value for tracking type control objectives, and 
𝜆𝜆𝑑𝑑𝑑𝑑 is the weighting factor (WF) adjusting the importance 
of these control objectives. According to specific 
applications, the reference currents have various sources, 
such as speed and flux controllers. 
 The FCS-MPC’s control performance highly depends on 
WFs selection, while till now there are no general and 
systematic design methods. Some strategies could be found 
in pieces of literature like sequential model predictive control 
(SMPC) [18], reinforcement learning (RL) [19], genetic 
algorithm (GA) [20], and so on. In this article, the WFs 
design details are neglected and listed in Table 1. 

 
3  ANN-MPC CONTROLLER DESIGN 
 
 In this section, the basic structure of the shallow neural 
network is introduced and a reasonable selection of 
activation functions is discussed for layers. Due to the finite 
number of candidate switch states for one control period, 

 
Fig. 4 Amounts of candidate switch states of conventional FCS-
MPC with one-step prediction horizon for the three-phase multi-
level inverters 
 
the main task for ANN to imitate is regarded as a multi-
classification. 
 
3.1  Imitator Motivation 

 
As long as the aimed control objectives could be 

quantified into a cost function, with the assistance of 
weighting factors, all of the objectives would be greedily 
pursued through the trade-off progress. For NPC power 
converters, typical control requirements are load current 
reference tracking and DC-link capacitor voltage balance, 
which are formulated as follows: 

According to the basic control idea of FCS-MPC, all of 
the candidate switch states need to experience prediction 
and minimization stages. As Fig. 3 and Fig. 4 show, the 
computation burden of the traversal progress would surge 
exponentially with more complex topologies and longer 
prediction horizon, which is impossible for practical 
implementation. With enough number of neurons in the 
hidden layer of ANN, approximation ability and parallel 
computation characteristic enable much faster function 
mapping progress and high imitation accuracy at the same 
time. In another word, FCS-MPC is regarded as an expert, 
after completed training progress, ANN imitator (ANN-
MPC) could theoretically show as a computationally 
efficient FCS-MPC, which promisingly expands FCS-
MPC’s generality for complex power electronics system 
and long horizontal prediction. 

There has been a large number of various neural networks 
in the artificial intelligence (AI) area, such as convolutional 
ones and recurrent ones. However, for faster online forward 
propagation to beat FCS-MPC, it is unfair and not 
applicable to use large scale AI model, especially for simple 
converters and not so long prediction horizon. Therefore, 
here almost the simplest one, the shallow neural network, is 
considered to achieve the imitation task. Of course, there 
are some intuitive and natural idea for network structure 
modification, such as adding layers and adding neurons. 
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Fig. 5 Shallow neural network structure and forward propagation 
 

Table 2  ANN Structure Parameters 
Structure Component Specification 
Neuron amounts for layers 7 × 5 × 27 
Hidden layer activation Linear Pieced Sigmoid 𝑔𝑔[1] 
Output layer activation SoftMax 𝑔𝑔[2] 

 
3.2  Shallow neural network structure 

 
Usually more complex learning model means higher 

imitation ability, but computation burden needs to be cared, 
which leads us to concentrate more on lightweight learning 
models. 

As Fig. 5 shows, a shallow neural network consists of 
three layers including input layer, hidden layer and output 
layer. The layer-to-layer propagation depends on weighted 
input and activation functions as follows: 

 

𝐻𝐻��⃗ = 𝑔𝑔[1]��𝐼𝐼,𝑊𝑊���⃗ 1� + 𝐵𝐵�⃗ 1�,𝑂𝑂�⃗ = 𝑔𝑔[2]��𝐻𝐻��⃗ ,𝑊𝑊���⃗ 2� + 𝐵𝐵�⃗ 2�, (5) 
 

where ⟨𝑥𝑥1���⃗ , �⃗�𝑥2⟩ represents the matrix multiplication between  
a vector and a matrix, 𝐼𝐼,𝐻𝐻��⃗  and 𝑂𝑂�⃗  are the feature vectors of 
input, output of hidden and output layers, respectively; 𝑊𝑊���⃗ 1 
and 𝑊𝑊���⃗ 2  are the weight matrixes; 𝐵𝐵�⃗ 1  and 𝐵𝐵�⃗ 2  are the bias 
vectors; while 𝑔𝑔[1]  and 𝑔𝑔[2]  are the hidden and output 
layer's activation functions whose selection depends on 
appropriately matched statistic model and the input-output 
characteristics. 

The size of input layer is determined by the information 
amount required by the expert controller. Here seven inputs 
are needed by the FCS-MPC for predictive model and cost 
function minimization. It is worth mentioning that, by the  
utilization of one-hot encoding (i.e., switch state 2 

corresponds [010⋯ 00]�������
27 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑛𝑛𝑠𝑠 𝑥𝑥𝑛𝑛 𝑜𝑜𝑛𝑛𝑑𝑑𝑝𝑝𝑛𝑛𝑑𝑑 𝑙𝑙𝑎𝑎𝑙𝑙𝑛𝑛𝑛𝑛

 ), the number of  
neurons in the output layer is the same as the number of 
switch states, which means the ANN’s output is directly 
optimal switch state for one control period. And till now there 
is no systematic method to obtain the best number of neurons 
in the hidden layer, which we would discuss in later sections. 

 
Fig. 6 Training data generation and training progress of ANN-
MPC imitator  
 

In this article, for convenient implementation on FPGA in 
the future, the linearly pieced sigmoid function is chosen as 
the activation function 𝑔𝑔[1] for hidden layer as follows: 
 

𝑔𝑔[1](𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
→ 𝐻𝐻��⃗ =

1

1 + 𝑒𝑒−��𝐼𝐼,𝑊𝑊���⃗1�+𝐵𝐵�⃗ 1�
, (6) 

 
otherwise the original sigmoid function has to be stored as a 
large lookup table in inner FPGA, which occupies large part 
of storage resources. For output layer, during one control 
period, FCS-MPC traverses all potential candidate switch 
states and select one, which is more closely to be a multi-
classification task motivating SoftMax function as the  
activation function as follows: 

 

𝑔𝑔[2](�⃗�𝑥)𝑥𝑥 =
𝑒𝑒𝑥𝑥𝑖𝑖

∑  𝐾𝐾
𝑗𝑗=1 𝑒𝑒

𝑥𝑥𝑗𝑗 → (𝑂𝑂�⃗ )𝑥𝑥 =
𝑒𝑒��𝐻𝐻��⃗ ,𝑊𝑊���⃗2�+𝐵𝐵�⃗ 2�𝑖𝑖

∑  𝑘𝑘
𝑗𝑗=1 𝑒𝑒

��𝐻𝐻��⃗ ,𝑊𝑊���⃗2�+𝐵𝐵�⃗ 2�𝑗𝑗
, (7) 

 

where �𝑂𝑂�⃗ �
𝑥𝑥
 means 𝑖𝑖th component of the vector 𝑂𝑂�⃗ , which 

is similar for ��𝐻𝐻��⃗ ,𝑊𝑊���⃗ 2� + 𝐵𝐵�⃗ 2�𝑥𝑥. By the utilization of SoftMax 

function, the output 𝑂𝑂�⃗   could be regarded as a normalized 
probability distribution in which the element corresponding 
to the maximum probability is 1, the others are 0. 
 
3.3  Training Data Generation and Training 
Progress 

 
As shown in Fig. 6, through pure virtual simulation or 

hardware-in-the-loop simulation, the data sets for offline 
training of ANN are produced by the FCS-MPC expert, 
which has been designed in Section 2. It deserves 
mentioning that the designed environment, load state 
including electric characteristic and etc., should try to cover 
the whole operation range, such as no load, full load, 
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Fig. 7 System-level view of FPGA-in-the-loop (FIL) simulation 
environment  
 
reference step transient, even fault situation and etc. 

After wide range of training data generation, the offline 
training progress of a shallow neural network is continued 
for collection of weight matrix 𝑊𝑊���⃗ 1  and 𝑊𝑊���⃗ 2  and bias   
vectors  𝐵𝐵�⃗ 1 and 𝐵𝐵�⃗ 2. After forward propagation of training 
sets, by the utilization of back propagation combining chain  
rule and gradient descent, the derivative of error over 
hyperparameters (weight matrix and bias vectors) shows 
effective modification for hyperparameters. And usually for 
fast and stable convergence, the learning rate (modification 
step for hyperparameters) would be gradually reduced as 
the iteration of training progress proceeds. 

To accelerate the training progress, after the first few 
training sessions, the immature ANN-MPC and FCS-MPC 
are simulated in parallel. Instead of independent operation, 
only FCS-MPC operates to control the NPC converter, 
while the control input of the immature ANN-MPC are the 
same as FCS-MPC’s and the its control outputs are only 
recorded for mismatch detection. And this is for special 
training data collection when they have different control 
output especially during transient states. In another word, 
the mismatched control output often corresponds 
uncovered input domain during training. 
 

4  Simulation Study and Verification 
 
4.1  FPGA-in-the-loop Implementation 
 

HDL Verifier based FPGA-in-the-loop (FIL) simulation 
provides the capability to use Simulink or MATLAB 
software for testing designs in real hardware for any 
existing HDL codes. The simulation set-up has been  
devised around a development board (DE1-SoC) with an 
embedded Altera Cyclone V 5CSEMA5F31C6N FPGA. 
This device is driven by an on-board 50 MHz oscillator and 
supports JTAG Mode. It has 85K programmable logic 
elements and 4450 Kbits embedded memory which can 
accommodate the function of simple controller.  

As Fig. 7 shows, by the replacement of MATLAB 
Function block by FIL block, there would be interactive 
data flow between the particular FPGA and constructed 
Simulink environment. Here FPGA is mainly responsible 
for forward propagation of the designed ANN. And the 

 
Fig. 8 ANN-MPC imitation accuracy with different neuron 
amounts in hidden layer 
 
control signal (selection of switch states) is then transmitted  
to Simulink model by JTAG connection. The dataflow 
inside FPGA is monitored by an IP core generated by the 
HDL Verifier. 

 
4.2  Comparative Analysis of Rough Estimation 
of Computation Burden 
 

From the design of artificial neural network to the actual 
implementation on the controller (such as FPGA based), in 
this paper, we estimate the computational complexity by 
counting the total number of floating-point operations 
(FLOPs). 

For traditional FCS-MPC, due to the traverse progress, 
each candidate switch state would experience prediction 
equation and cost function. As presented in [4], the 
computation burden (𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑𝑥𝑥𝑜𝑜𝑛𝑛) for former stage depends 
on the discretized system model, while that (𝑛𝑛𝑑𝑑𝑜𝑜𝑠𝑠𝑑𝑑 𝑓𝑓𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑥𝑥𝑜𝑜𝑛𝑛) 
of the latter one depends on complexity of cost function, 
such as selected order of the norm, number of control 
objectives and so on. Considering the number of potential 
switch states is 2𝑙𝑙(x−1), where 𝑦𝑦 is the number of phases 
(or bridges) and 𝑥𝑥  is the number of independent switch 
pairs for each phase, the estimated computation burden of 
FCS-MPC is as: 

 

𝑁𝑁FCS−MPC = 2𝑙𝑙(𝑥𝑥−1)�𝑛𝑛prediction + 𝑛𝑛cost function �, (8) 
 

where 𝑁𝑁FCS−MPC  surges exponentially as the increasing 
number of levels or phases of power converters. 

For the shallow neural network, without online learning 
or update, only forward propagation is needed for online 
implementation. The computation burden comes from 
matrix multiplication and activation functions as: 

 

𝑁𝑁ANN−MPC = 2𝑙𝑙𝑚𝑚 + 2𝑚𝑚𝑛𝑛 + 𝜀𝜀1𝑚𝑚 + 𝜀𝜀2𝑛𝑛, (9) 
 

where 𝑙𝑙, 𝑚𝑚 and 𝑛𝑛 are the number of neurons in the input 
layer, hidden layer and output layer, respectively; 𝜀𝜀1 and 
𝜀𝜀2  are FLOPs calculation demand of activation function 
𝑔𝑔[1]  and 𝑔𝑔[2]  (in this paper, both 𝜀𝜀1  and 𝜀𝜀2 
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Fig. 9 FCS-MPC FIL simulation results for load current response 
applying decoupled-step on 𝑖𝑖𝛼𝛼∗  and 𝑖𝑖𝛼𝛼∗  
 
are equal to 3), respectively. 

For long term operation, some of the system parameters 
would gradually change which motivates a large number of 
adaptive control method. Therefore, FLOPs operation 
containing only system parameters needs remaining. 
According to discrete model of the three-phase three-level 
NPC converter system in this article, the number of FLOPs 
of prediction model 𝑛𝑛𝑝𝑝𝑛𝑛𝑛𝑛𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑𝑥𝑥𝑜𝑜𝑛𝑛  is 24, and that of cost 
function 𝑛𝑛𝑑𝑑𝑜𝑜𝑠𝑠𝑑𝑑 𝑓𝑓𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑥𝑥𝑜𝑜𝑛𝑛 is 8, and the number of candidate 
switch state for one control period is 27, which means total 
number of FLOPs 𝑁𝑁FCS−MPC𝑁𝑁𝑁𝑁𝑁𝑁  is 864. On the other hand, the 
number of FLOPs of the designed ANN-MPC shown in Fig. 
6 is 320 + 5𝜀𝜀1 + 27𝜀𝜀2  (5 neurons in the hidden layer), 
which means much reduction of computation burden. 

 
4.3  Selection of Number of Hidden Neurons 
 

As mentioned in Section 3, till now there is no systematic 
method to obtain the best number of neurons in the hidden 
layer. Fig. 8 shows some statistics about the imitation 
accuracy for 4 ANN-MPCs with different number of 
neurons. It is obvious that the improved accuracy mostly 
come from better selection for redundant vectors as the 
increase of neuron amounts in the hidden layer. However, 
the cost performance (marginal benefit, net increasing 
accuracy per added neuron) decreases. In another word, 
more computation burden is required for same net increased 
accuracy as the increase of neuron amounts. On the other 

 
Fig. 10 ANN-MPC FIL simulation results for load current 
response applying decoupled-step on 𝑖𝑖𝛼𝛼∗  and 𝑖𝑖𝛼𝛼∗  
 
hand, the non-redundant voltage vector selection error 
comes from gradient descent training method itself. 
Because of the loss function definition, the most frequent 
appearing input states are more cared by the network, 
especially when the network is lightweight. As the results, 
there would be trade-off consideration between imitation 
accuracy and the computation burden. 
 
4.4  Control Performance 
 

Hardware description language (HDL) codes of both 
ANN-MPC and FCS-MPC are conducted by FIL 
implementation in MATLAB/Simulink environment, and 
the system parameters are all listed in the Table 1, and the 
structure details of ANN-MPC is listed in the Table 2. After 
enough offline training progress covering as wide as 
possible work range (the blue area in Fig. 9 and Fig. 10), 
the ANN-MPC directly replace FCS-MPC for online 
operation even facing unknown situation in training set (the 
red area). 

The control performance lasting several periods for FCS-
MPC and ANN-MPC are shown in Fig. 9 and Fig. 10, 
respectively. An initial voltage difference for the DC-link is 
set for voltage balance ability. And there is a reference 
current step drop at 𝑡𝑡 = 0.04 𝑠𝑠 for transient state test. It is 
obvious that both MPC methods are highly similar with 
each other with only bit differences. The difference of THD 
between them is only around 0.1% , and the amplitude 
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deviation of ANN-MPC is 0.01 A bigger.  Both of them 
achieve good voltage balance ability while ANN-MPC’s 
dynamic response is even faster. 

To show the decoupling between current control in 𝛼𝛼𝛼𝛼 
frame, the amplitude of 𝑖𝑖𝛼𝛼∗   (real component of reference 
current) was alone increased from 12 to 24 A at time 𝑡𝑡 =
0.08 𝑠𝑠 . It is clear that ANN-MPC shows comparable 
tracking ability for decoupled reference currents. 

It is observed that, during ANN-MPC operation steady 
state, more ripples happen for the DC-link voltage balance. 
At the same time, the switching frequency is a little bit 
higher than that of FCS-MPC. According to the Fig. 8, the 
reason is that most of the imitation failures are for 
redundant voltage vectors selection, which means imitation 
resolution top limit of ANN. 

 
5  Conclusion 

 
In this article, the effectiveness of ANN-MPC strategy is 

verified by FPGA-in-the-loop (FIL) implementation of 
popularly used NPC converters in MATLAB/Simulink 
environment, which shows promising potentials to maintain 
advantages of advanced control technologies but reduce 
much computation complexity. The practical 
implementation of the ANN-based controller would be 
continued in pure hardware platform. Different from most 
image recognition applications, according to unique work 
requirement of power electronics systems, like high 
operation frequency, such Machine Learning (ML)-
supported power electronics controllers would be tailored 
in future research. 
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